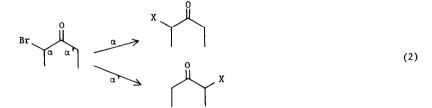
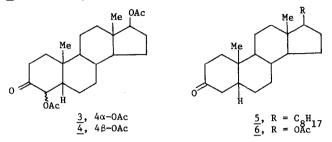
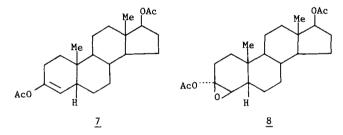

STUDY OF STEROIDAL KETOL ACETATES


R.B. Warneboldt and Larry Weiler¹

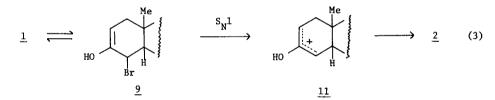
Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada (Received in USA 29 April 1971; received in UK for publication 6 August 1971)


The steroidal nucleus has provided the template on which a wealth of molecular rearrangements have been forged.² Recently, we³ and others⁴ have found that 3-keto-4-bromo-5 β -steroids are converted into 2-acetoxy steroids, eq 1, on treatment with sodium acetate in refluxing

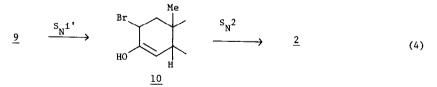

acetic acid. In the case of <u>1</u> we have found this rearrangement to occur in excellent yield and we cannot find any trace of isomeric ketol acetate in the crude product <u>2</u> either spectroscopically or chromatographically. There are many examples of <u>cine</u> substitutions in steroidal chemistry,^{2,5} however this reaction (eq 1) is notable for the high yield (>85%) and purity of product. There are several possible mechanisms for this type of transformation. Fieser⁶ and \cos^7 have found that α -bromoketones can undergo substitution at the α - or α '-position, eq 2.

Thus one should consider the intermediacy of the 4α - or 4β -acetoxy compound in reaction 1. Warnhoff⁸ has found that α -acetoxycyclohexanone transfers the acetate group to the α '-carbon above 220°, and similar rearrangements have been found to occur at lower temperatures.^{9,10} This further enhances the possibility that the 4-acetoxy isomer may be an intermediate in reaction 1. Recently, Satoh and Takahashi¹¹ have isolated an intermediate in this reaction and they suggest that this is the 2α -acetoxy isomer. From this they conclude that reaction 1 involves an unusual $\underline{\text{trans}} - S_N^2$ ' displacement on the 4 β -bromo compound $\underline{1}$. Our aim was to determine if the 4 β - or 4 α -acetoxy compounds, $\underline{3}$ and $\underline{4}$, were intermediates in reaction 1 and to determine if either $\underline{3}$ or $\underline{4}$ was related to the intermediate isolated by Satoh and Takahashi¹¹. Since these workers started with 5 β -cholestan-3-one ($\underline{5}$) and we start with 17 β -acetoxy-5 β -androstan-3-one (6) direct comparisons could not be made.

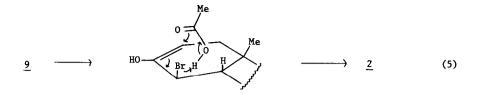
A sample of <u>6</u> was converted into the enol acetate <u>7</u> in excellent yield following minor modifications of Liston's procedure¹² to prevent oxidation of the product. The enol acetate <u>7</u> was epoxidized with m-chloroperbenzoic acid - sodium bicarbonate¹³ to give the β -epoxide <u>8</u>.


We assign the β -configuration to the epoxidation product on the following bases. The β -face appears to be the sterically more accessible direction for peracid attack.¹⁴ The nmr spectrum of <u>8</u> has a singlet at δ 3.07 due to the proton on C-4. An examination of the Dreiding model of <u>8</u> indicates that the dihedral angle between the hydrogens on C-4 and C-5 is <u>ca</u>. 100°. The dihedral angle between the hydrogens on C-4 and C-5 in the isomeric α -epoxide is estimated to be <u>ca</u>. 50°. In an extensive study of steroidal epoxides and episulfides it was found that the coupling constant could approach zero only for dihedral angles of 70-100° while a dihedral angle of 50° is expected to yield a coupling constant of at least 2 Hz.¹⁵ Also, the chemical shift of the C-19 methyl protons in <u>8</u>, δ 0.87₅, agrees closely with that of the C-19 protons of 38,4 β -oxido-5 β -cholestane, δ 0.86₈.¹⁶

Pyrolysis of 8 at 160° for 5 min gave 4β , 17β -diacetoxy- 5β -androstan-3-one (3) in ca.


80% yield. The salient feature of the nmr spectrum of $\underline{3}$ which suggested its structure was a one-proton doublet (J= 8 Hz) at δ 5.41. This is assigned to the 4 β -hydrogen of $\underline{3}$ which probably is in a boat conformation due to the severe interaction of the 4 α -acetoxy group with C-7 and C-9 in the chair conformation. On refluxing in acetic acid - sodium acetate, which are conditions for reaction 1, $\underline{3}$ is converted cleanly to the 4 β -acetoxy isomer $\underline{4}$. The 4 β -isomer $\underline{4}$ was also obtained by treating $\underline{8}$ with HCl in ether. The 4 β -acetoxy compound $\underline{4}$ has in its nmr spectrum a one-proton doublet (J = 12 Hz) at δ 5.52 which is assigned to the 4 α -hydrogen. These epoxide rearrangements parallel those of 2α , 3α -oxido-3 β -acetoxycholestane.¹⁷ When $\underline{4}$ was subjected to the conditions for reaction 1 it was recovered unchanged.

These experiments would indicate that neither <u>3</u> nor <u>4</u> can be an intermediate in reaction 1. In fact, <u>3</u> and <u>4</u> did not rearrange to either 2-acetoxy isomer on thermolysis at 160°. Hence the intermediate isolated by Satoh and Takahashi¹¹ must be the 2*a*-acetoxy compound and it does not arise <u>via</u> the 4α - or 4β -acetoxy isomer.


Bordwell¹⁸ has catalogued some of the possible pathways by which a <u>cine</u> substitution such as reaction 1 can occur. The first possibility, a S_N^2 substitution at C-4 followed by a S_N^i ' rearrangement <u>via</u> the enol is discarded by the above results. An S_N^1 pathway, eq 3, is

a possibility. A S_N^{i} rearrangement of the bromo enol <u>9</u> to <u>10</u> followed by a S_N^2 reaction as outlined in eq 4 is also a possibility. However, Liston has found that the bromoketone <u>1</u> and 17β -acetoxy-2 β -bromo-5 β -androstan-3-one are not interchanged or equilibrated even in HBr-HOAc¹².

This would suggest that the rearrangement of <u>9</u> to <u>10</u> does not occur under our conditions. A second type of S_N^{i} reaction is shown in eq 5; but, this does not require the intermediacy of the 2 α -isomer. A final possibility is a S_N^{2} reaction of <u>9</u>.^{11,18} We have synthesized 17 β -acetoxy-2 β -bromo-5 β -androstan-3-one¹² and it is cleanly converted to <u>2</u> in refluxing acetic

acid - sodium acetate at a rate comparable to <u>1</u>. This would suggest that the mechanism shown in eq 3 is operating; namely both bromoketones give the same intermediate <u>11</u>.¹⁹

- (1) Address correspondence to this author.
- (2) N.L. Wendler in "Molecular Rearrangements", P. de Mayo, Ed., Interscience Publishers, New York, N.Y., 1964, Volume II, Chapter 16.
- (3) K.J. Paisley and L.Weiler, unpublished results.
- (4) T. Takahashi, Y. Satoh and A. Hagitani, <u>Nippon Kagaku Zasshi</u>, <u>89</u>, 974 (1968); <u>Chem.</u> <u>Abstr.</u>, <u>70</u>, 78247a (1969).
- (5) (a) P.A. Hart in "Steroid Reactions", C. Djerassi, Ed., Holden-Day, Inc., San Francisco, Calif., 1963, Chapter 3; (b) C. Fenselau in "Steroid Reactions", C. Djerassi, Ed., Holden-Day, Inc., San Francisco, Calif., 1963, Chapter 13.
- (6) L.F. Fieser and M.A. Romero, <u>J. Amer. Chem. Soc.</u>, <u>75</u>, 4716 (1953).
- (7) J.S.G. Cox, <u>J. Chem. Soc</u>., 4508 (1960).
- (8) I.S.-Y. Wang and E.W. Warnhoff, Chem. Commun., 1158 (1969).
- (9) D.H.R. Barton, P.D. Magnus and M.J. Pearson, Chem. Commun., 550 (1969).
- (10) J.C. Sheehan and R.M. Wilson, J. Amer. Chem. Soc., 89, 3457 (1967).
- (11) J.Y. Satoh and T.T. Takahashi, Chem. Commun., 1714 (1970).
- (12) A.J. Liston, J. Org. Chem., 31, 2105 (1966).
- (13) K.L.Williamson and W.S. Johnson, J. Org. Chem., 26, 4563 (1961).
- (14) K. Takeda, T. Okanishi, H. Osaka, A. Shimaoka and N. Aezono, <u>Chem. Pharm. Bull</u>. (Tokyo), <u>9</u>, 388 (1961).
- (15) K. Tori, T. Komeno and T. Nakagawa, J. Org. Chem., 29, 1136 (1964).
- (16) R.F. Zurcher, <u>Helv. Chim. Acta</u>, <u>46</u>, 2054 (1964).
- (17) K.L.Williamson, J.I. Coburn and M.F. Herr, <u>J. Org. Chem.</u>, <u>32</u>, 3934 (1967).
- (18) F.G. Bordwell, Acc. Chem. Res., 3, 281 (1970).
- (19) We are grateful to the B.C. Heart Foundation and the University of British Columbia for financial support of this work.